Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012186, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648216

RESUMO

In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.

2.
PLoS Negl Trop Dis ; 18(3): e0012050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527083

RESUMO

Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Anfotericina B/uso terapêutico , Leishmaniose Cutânea/parasitologia , Ftalimidas/farmacologia , Ftalimidas/uso terapêutico
3.
Nat Commun ; 14(1): 2403, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105991

RESUMO

African Trypanosomes have developed elaborate mechanisms to escape the adaptive immune response, but little is known about complement evasion particularly at the early stage of infection. Here we show that ISG65 of the human-infective parasite Trypanosoma brucei gambiense is a receptor for human complement factor C3 and its activation fragments and that it takes over a role in selective inhibition of the alternative pathway C5 convertase and thus abrogation of the terminal pathway. No deposition of C4b, as part of the classical and lectin pathway convertases, was detected on trypanosomes. We present the cryo-electron microscopy (EM) structures of native C3 and C3b in complex with ISG65 which reveal a set of modes of complement interaction. Based on these findings, we propose a model for receptor-ligand interactions as they occur at the plasma membrane of blood-stage trypanosomes and may facilitate innate immune escape of the parasite.


Assuntos
Complemento C3 , Trypanosoma brucei gambiense , Humanos , Ativação do Complemento , Complemento C3/metabolismo , Convertases de Complemento C3-C5/metabolismo , Complemento C5/metabolismo , Via Alternativa do Complemento , Microscopia Crioeletrônica , Ligação Proteica , Trypanosoma brucei gambiense/metabolismo
4.
J Biol Chem ; 299(1): 102726, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410438

RESUMO

The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.


Assuntos
Proteínas , Proteômica , Biotinilação , Poro Nuclear , Proteínas/química , Proteômica/métodos , Estreptavidina/química
5.
Vaccines (Basel) ; 10(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298575

RESUMO

DNA vaccines with their extraordinary properties are the best choice as vectors for subunit vaccines but are not in compliance with safety regulations, mainly because of the antibiotic resistance genes on their backbone. New generations of plasmids with minimum bacterial backbones are now developed as promising alternatives to pass the safety rules and be replaced for conventional plasmids. Here we have compared the nanoplasmid (with RNA-out selection system and professional HTLV-1 containing promoter) and the conventionally used pcDNA plasmid, as regards the transfection efficiency. The EGFP gene was cloned in both pcDNA-3.1+ and NTC9385R-MSC and transfected into COS-7 cells for expression evaluation by flow cytometry. Meanwhile, qPCR was used to analyze the EGFP mRNA copy numbers. It was concluded that the nanoplasmid, with its extraordinary properties, can be a tempting alternative to conventional pcDNA in equal or equimolar concentrations for vaccine design. These promising results can put DNA vaccines back into focus, especially regarding diseases controlled by robust cellular immune responses.

6.
Antimicrob Agents Chemother ; 66(8): e0072722, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35856666

RESUMO

Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.


Assuntos
Antineoplásicos , Trypanosoma brucei brucei , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Potencial da Membrana Mitocondrial , Plasmodium falciparum
7.
Chem Biol Drug Des ; 99(4): 585-602, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914204

RESUMO

Seven types of Coronaviruses (CoVs) have been identified that can cause infection in humans, including HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, HCoV-MERS, and SARS-CoV-2. In this study, we investigated the genetic structure, the homology of the structural protein sequences, as well as the investigation of the active site of structural proteins. The active site of structural proteins was determined based on the previous studies, and the homology of their amino acid sequences and structure was compared. Multiple sequence alignment of Spike protein of HCoVs showed that the receptor-binding domain of SARS-CoV-2, SARS-CoV, and MERS-CoV was located at a similar site to the S1 subunit. The binding motif of PDZ (postsynaptic density-95/disks large/zona occludens-1) of the envelope protein, was conserved in SARS-CoV and SARS-CoV-2 according to multiple sequence alignment but showed different changes in the other HCoVs. Overall, spike protein showed the most variation in its active sites, but the other structural proteins were highly conserved. In this study, for the first time, the active site of all structural proteins of HCoVs as a drug target was investigated. The binding site of these proteins can be suitable targets for drugs or vaccines among HCoVs.


Assuntos
Coronavirus , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus , Domínio Catalítico , Coronavirus/química , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
8.
Exp Parasitol ; 223: 108082, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33581108

RESUMO

Leishmaniasis is a complex vector-borne disease mediated by Leishmania parasite and a strong and long-lasting CD4+ Th1 and CD8+-T cell immunity is required to control the infection. Thus far multivalent subunit vaccines have met this requirement more promisingly. However several full protein sequences cannot be easily arranged in one construct. Instead, new emerging immune-informatics based epitope formulations surpass this restriction. Herein, we aimed to examine the protective potential of a dendritic cell based vaccine presenting epitopes to CD8+ and CD4+-T cells in combination with DNA vaccine encoding the same epitopes against murine cutaneous leishmaniasis. Immature DCs were loaded with epitopes (selected from parasite proteome) in vitro with or without CpG oligonucleotides and were used to immunize BALB/c mice. Peptide coding DNA was used to boost the system and immunological responses were evaluated after Leishmania (L.) major infectious challenge. The pre-challenge response to included epitopes was Th1 polarized which potentially lowered the infection at early time points post-challenge but not at later weeks. Collectively, DC prime-DNA boost was found to be a promising approach for Th1 polarization however the constituent epitopes undoubtedly make a significant contribution in the protection outcome of the vaccine.


Assuntos
Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/prevenção & controle , Vacinas Protozoárias , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Epitopos/química , Epitopos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Proteoma/química , Vacinas de DNA
10.
Iran J Parasitol ; 15(3): 383-392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082803

RESUMO

BACKGROUND: Visceral leishmaniasis is the most severe form of leishmaniasis caused by Leishmania (L.) donovani complex. Drug-resistant strains have been developed as a consequence of the current chemotherapeutic interventions, which has increased the need for advanced preventive and therapeutic strategies. A2-CPA-CPB-CTE-recombinant strain of L. tarentolae, which is non-pathogenic to humans, was shown protective in live vaccine as well as its DNA vaccine counterpart in both murine and canine models. METHODS: We evaluated the effectiveness of these DNA and live vaccination harboring A2-CPA-CPB-CTE in protecting hamsters against L. infantum infection using prime-boost regimens, namely DNA/DNA and Live/Live (n=9 hamsters per group). Cationic solid lipid nanoparticles (cSLN) were utilized as an adjuvant for DNA priming and electroporation for boosting DNA. At different time points post-challenge, parasite burden and body weight as well as humoral immune responses were measured. RESULTS: Both immunization strategies partially protect hamsters against L. infantum challenge. This protective immunity is associated with remarkable decrease in parasite load in liver and spleen of vaccinated hamsters eight weeks after challenge compared to control group. CONCLUSION: Both test groups (DNA/DNA and Live/Live) elicited high levels of IgG2 and total IgG as humoral immune responses and lower level of parasite propagation in both liver and spleen.

11.
Sci Rep ; 10(1): 16198, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004861

RESUMO

Anthroponotic cutaneous leishmaniasis (CL) caused by Leishmania tropica (L. tropica) represents a public health challenge in several resource poor settings. We herein employed a systems analysis approach to study molecular signatures of CL caused by L. tropica in the skin lesions of ulcerative CL (UCL) and non-ulcerative CL (NUCL) patients. Results from RNA-seq analysis determined shared and unique functional transcriptional pathways in the lesions of the UCL and NUCL patients. Several transcriptional pathways involved in inflammatory response were positively enriched in the CL lesions. A multiplexed inflammatory protein analysis showed differential profiles of inflammatory cytokines and chemokines in the UCL and NUCL lesions. Transcriptional pathways for Fcγ receptor dependent phagocytosis were among shared enriched pathways. Using L. tropica specific antibody (Ab)-mediated phagocytosis assays, we could substantiate Ab-dependent cellular phagocytosis (ADCP) and Ab-dependent neutrophil phagocytosis (ADNP) activities in the lesions of the UCL and NUCL patients, which correlated with L. tropica specific IgG Abs. Interestingly, a negative correlation was observed between parasite load and L. tropica specific IgG/ADCP/ADNP in the skin lesions of CL patients. These results enhance our understanding of human skin response to CL caused by L. tropica.


Assuntos
Biomarcadores/análise , Leishmania tropica/isolamento & purificação , Leishmaniose Cutânea/diagnóstico , Carga Parasitária/estatística & dados numéricos , RNA-Seq/métodos , Pele/patologia , Estudos de Casos e Controles , Citocinas/análise , Humanos , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Pele/metabolismo , Pele/parasitologia
12.
Exp Parasitol ; 209: 107823, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862270

RESUMO

Typically, antimicrobial peptides (AMPs) are short positive charged peptides serving a key role in innate immunity as well as antimicrobial activity. Discovering novel therapeutic agents is considered as an undeniable demand due to increasing microbial species with antibiotic resistance. In this direction, the unique ability of AMPs to modulate immune responses highlighted them as novel drug candidates in the field of microbiology. Patients affected by leishmaniasis; a neglected tropical disease, confront serious problems for their treatment including resistance to common drugs as well as toxicity and high cost of therapy. So, there is a need for development of new drug candidates to control the diseases. Jellein, a peptide derived from royal jelly of honeybee has been shown to have promising effect against several bacterial and fungal species. In current study, anti-leishmanial effect of Jellein and its lauric acid conjugated form was investigated against two forms of Leishmania major (L. major) parasite. Moreover, cytotoxic effect of these peptides was studied in THP1 cell line and human Red Blood Cells (RBCs). Furthermore, the mechanism of action of peptides on L. major promastigotes was assessed through different methods. The results demonstrated that, conjugation of lauric acid to Jellein not only had no effect on the elevation of antimicrobial activity but also halted it completely. Moreover, Jellein caused a limitation in the number of L. major promastigotes by pore formation as well as changing the membrane potential rather than induction of apoptosis or activation of caspases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Oligopeptídeos/química , Antígenos de Diferenciação de Linfócitos B/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/toxicidade , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Caspases/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ácidos Graxos/química , Citometria de Fluxo , Hemólise , Antígenos de Histocompatibilidade Classe II/farmacologia , Humanos , Ácidos Láuricos/farmacologia , Ácidos Láuricos/uso terapêutico , Ácidos Láuricos/toxicidade , Leishmania major/ultraestrutura , Potenciais da Membrana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Oligopeptídeos/toxicidade
13.
Vet Parasitol ; 276: 108976, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31739256

RESUMO

Cutaneous leishmaniosis (CL) is a parasitic disease in animals and human with no satisfactory treatments and vaccination. Rapamycin is a potent inhibitor of mammalian target of rapamycin (mTOR) with various applications. Here, the effect of rapamycin alone or in combination with two other drugs, namely amphotericin B (AmB) and glucantime, was investigated against Leishmania tropica infection. In vitro viability and electron microscopy evaluation of the parasites showed detrimental changes in their appearance and viability. Treatment with clinically relevant dose of rapamycin (10.2 µg/dose) is able to control the parasite load in BALB/c mice infected with L. tropica. Furthermore, the cytokine profiles showed significant polarization towards Th1 immune response. Surprisingly, combination therapy with either AmB or glucantime was not efficient. Rapamycin is showed an effective alternative therapy against leishmaniosis caused by L. tropica.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania tropica/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Sirolimo/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Antiprotozoários/farmacologia , Linhagem Celular Tumoral , Citocinas/análise , Feminino , Humanos , Concentração Inibidora 50 , Leishmania tropica/crescimento & desenvolvimento , Leishmania tropica/ultraestrutura , Leishmaniose Cutânea/prevenção & controle , Linfonodos/parasitologia , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Carga Parasitária , Distribuição Aleatória , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/efeitos dos fármacos
15.
PLoS Negl Trop Dis ; 13(2): e0007217, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30811391

RESUMO

Leishmaniasis, as a major health problem in tropical and sub-tropical areas in the world, needs novel, safe, nontoxic and plausible therapeutic solutions for its control. As a part of innate immune system, natural antimicrobial peptides have a potential to be used as new generation of antibiotics especially after persistent resistance of conventional antimicrobial agents. Brevinin 2R, a member of Defensin families of host defense peptides, showed promising effects against bacterial and fungal infections as well as cancerous cell lines. In the current research, the anti-leishmanial effect of Brevinin 2R and its lauric acid conjugate was investigated against Leishmania major (L. major) parasite. The data revealed that, conjugation of fatty acid to Brevinin 2R, strengthen its effect on L. major promastigotes as well as toxicity and hemolytic effect. These peptides showed anitleishmanial activity through cell membrane disruption and changes in the electrical and mitochondrial membrane potential. No signs of apoptosis induction or caspase activation were detected. Despite its hemolytic and cytotoxic effect in in vitro conditions, lauric acid- Brevinin 2R (L- Brevinin 2R) did not show site specific adverse reactions in animal model. Treatment course with L- Brevinin 2R in the L. major infected mice exhibited decreased parasite load in the lymph nodes adjacent to the infected site despite cytokine production profile and footpad swelling data.


Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ácidos Láuricos/farmacologia , Leishmania major/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Láuricos/química , Leishmania major/crescimento & desenvolvimento , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Linfonodos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Pele/parasitologia
16.
Expert Rev Anti Infect Ther ; 16(6): 461-469, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29889579

RESUMO

INTRODUCTION: Leishmaniasis is one of the neglected tropical diseases and is highly endemic in many countries. Currently, there is no adequate human vaccine and treatment to control the disease. Areas covered: As a result of the failure of chemotherapy and toxicity, it is necessary to find another approach for the treatment of leishmaniasis. Recently, antimicrobial peptides (AMPs), originating from natural resources, have attracted much attention for their use as a new antibiotics for many infectious and noninfectious diseases. Natural AMPs are named interchangeably as host defense peptides. They are naturally active in the innate immune system as a primary defense mechanism in most species all over the world. Several AMPs have been tested in in vitro and in vivo experiments against leishmaniasis. Expert commentary: Most AMPs require proper conformation to be active. Leishmania (L.) tarentolae as a nonpathogenic strain, is an effective tool not only for vaccine development but also for therapy. Recombinant L. tarentolae expressing selective or combined AMPs is a suggestive approach for leishmaniasis or any other infectious disease treatment.


Assuntos
Imunoterapia/métodos , Leishmaniose/terapia , Peptídeos/farmacologia , Animais , Antiprotozoários/imunologia , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Humanos , Imunidade Inata/imunologia , Leishmania/imunologia , Leishmania/isolamento & purificação , Leishmaniose/imunologia , Peptídeos/imunologia , Peptídeos/isolamento & purificação
17.
PLoS Negl Trop Dis ; 11(12): e0006123, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253854

RESUMO

Human Neutrophil Peptide 1 (HNP1) produced by neutrophils, is a well-known antimicrobial peptide which plays a role both in innate as well as in adaptive immunity and is under intensive investigation as a potential therapeutic agent. Previous in vitro experiments have indicated the leishmaniacidal effect of recombinant HNP1 on Leishmania major (L. major) promastigotes and amastigotes. In the current study, we further extended the idea to explore the remedial effect of HNP1 in the two modalities of peptide therapy (folded HNP1) and gene therapy in L. major infected BALB/c mice. To this end, mice in five different groups received synthetic folded HNP1 (G1), pcDNA-HNP1-EGFP (G2), pcDNA-EGFP (G3), Amphotericin B (G4) and PBS (G5), which was started three weeks after infection for three consecutive weeks. Footpad swelling was monitored weekly and a day after the therapy ended, IFN-γ, IL-4, IL-10, IL-6 and nitric oxide produced by splenocytes were analyzed together with the parasite load in draining lymph nodes. Arginase activity and dermal histopathological changes were also analyzed in the infected footpads. We demonstrated that both therapeutic approaches effectively induced Th1 polarization and restricted parasite burden. It can control disease progression in contrast to non-treated groups. However, pcDNA-HNP1-EGFP is more promising in respect to parasite control than folded HNP1, but less effective than AmB treatment. We concluded with the call for a future approach, that is, a DNA-based expression of HNP1 combined with AmB as it can improve the leishmaniacidal efficacy.


Assuntos
Imunoterapia/métodos , Leishmania major/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Células Th1/imunologia , Tripanossomicidas/uso terapêutico , alfa-Defensinas/uso terapêutico , Anfotericina B/uso terapêutico , Animais , Arginase/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Citocinas/sangue , Feminino , Proteínas de Fluorescência Verde/genética , Leishmaniose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Carga Parasitária , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , alfa-Defensinas/genética
18.
Immunotherapy ; 9(13): 1089-1102, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29032739

RESUMO

AIM: Several disadvantages about chemotherapy for leishmaniasis has reinforced discovery of novel therapeutic agents especially immunotherapeutics. HNP1, as a member of the mammalian antimicrobial peptides family, is an attractive molecule due to its broad functional spectrum. Here, the in vivo potency of HNP1 in transgenic Leishmania tarentolae as an immunotherapy tool against Leishmania major-infected BALB/c mice was examined. METHODS & RESULTS: 3 weeks after infection with L. major, the treatment effect of L. tarentolae-HNP1-EGFP was pursued. The results were promising in respect to parasite load control and Th1 immune response polarization compared with controls. CONCLUSION: Immunotherapy by live L. tarentolae secreting HNP1 can elicit cellular immune response in a susceptible mouse model in order to control L. major infection.


Assuntos
Anti-Infecciosos/uso terapêutico , Imunoterapia/métodos , Leishmania/fisiologia , Leishmaniose/terapia , Células Th1/imunologia , alfa-Defensinas/uso terapêutico , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Leishmaniose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Carga Parasitária , Equilíbrio Th1-Th2 , Transgenes/genética , alfa-Defensinas/genética
19.
J Breast Cancer ; 19(1): 34-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066094

RESUMO

PURPOSE: Immunotherapy is one of the treatment strategies for breast cancer, the most common cancer in women worldwide. In this approach, the patient's immune system is stimulated to attack microscopic tumors and control metastasis. Here, we used interferon γ-induced protein 10 (IP-10), which induces and strengthens antitumor immunity, as an immunotherapeutic agent. We employed Leishmania tarentolae, a nonpathogenic lizard parasite that lacks the ability to persist in mammalian macrophages, was used as a live delivery system for carrying the immunotherapeutic agent. It has been already shown that arginase activity, and consequently, polyamine production, are associated with tumor progression. METHODS: A live delivery system was constructed by stable transfection of pLEXSY plasmid containing the IP-10-enhanced green fluorescent protein (IP-10-egfp) fusion gene into L. tarentolae. Then, the presence of the IP-10-egfp gene and the accurate integration location into the parasite genome were confirmed. The therapeutic efficacy of IP-10 delivered via L. tarentolae and recombinant pcDNA-(IP-10-egfp) plasmid was compared by determining the arginase activity in a mouse 4T1 breast cancer model. RESULTS: The pcDNA-(IP-10-egfp) group showed a significant reduction in tumor weight and growth. Histological evaluation also revealed that only this group demonstrated inhibition of metastasis to the lung tissue. The arginase activity in the tissue of the pcDNA-(IP-10-egfp) mice significantly decreased in comparison with that in normal mice. No significant difference was observed in arginase activity in the sera of mice receiving other therapeutic strategies. CONCLUSION: Our data indicates that IP-10 immunotherapy is a promising strategy for breast cancer treatment, as shown in the 4T1-implanted BALB/c mouse model. However, the L. tarentolae-(IP-10-EGFP) live delivery system requires dose modifications to achieve efficacy in the applied regimen (six injections in 3 weeks). Our results indicate that the arginase assay could be a good biomarker to differentiate tumoral tissues from the normal ones.

20.
Expert Rev Vaccines ; 15(7): 879-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26905526

RESUMO

Leishmaniasis is a neglected disease and is endemic in tropical and sub-tropical areas worldwide. Lifelong immunity after recovery indicates that vaccination could be a promising approach to overcome the disease. Although different antigens have been successfully tested against all clinical forms, none of them have been shown to fulfill the safety and efficiency requirements for human applications. Hence, strong vehicles are needed to carry antigens of interest and potentiate its presence in the body. So far, various live or chemical carriers have been applied to reinforce the immunological effects of ideal antigens. In the current review, the recent attempts in this field have been summarized.


Assuntos
Sistemas de Liberação de Medicamentos , Vacinas contra Leishmaniose/administração & dosagem , Vacinas contra Leishmaniose/imunologia , Leishmaniose/prevenção & controle , Descoberta de Drogas/tendências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...